PHYSICAL REVIEW E VOLUME 55, NUMBER 4 APRIL 1997

Locally accurate dynamical Euclidean group
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We derive the locally accurate representation for the dynamical symplectic group for a beam element
immersed in a field-free region. The results are expressed in terms of the displacement of a fiducial frame in the
usual Euclidean space. The method does not involve geometrical constructions of a complexity exceeding that
of a usual change of basis in Euclidean space. The extra complexity is handled by algebraic manipulations
connecting the Lie representation of the usual Euclidean group with its dynamical equivalent. This is achieved
by eliminating potential divergences in the “thin block” representation. Although this representation is ideally
suited for large machines, it fails in the neighborhood of 180° racetrack magnets due to these divergences. All
operations described in this paper can be fully automatized in a computer[8d@€3-651X97)11403-9

PACS numbgs): 29.20.Dh, 41.85.Ja, 41.85.Lc

[. INTRODUCTION fiction creation. Here, as in the case of the virtual kitchen, we
will be able to grab a magnet and move it. However, as in the
The introduction of the Euclidean group of translations“holodeck,” we also derive the effect of the magnet dis-
and rotations in the realm of particle tracking codes has twglacements on the particle trajectory. In other words our
purposes. First, in this day and age of “object-oriented proframework, under the condition of magnet independence,
gramming” it forces an immediate crystallization of the con- will permit the realization of a virtual reality program in
cept of a map between two layout planes as the central objeethich an accelerator physicist grabs magnets, moves them,
of a tracking code. A proper understanding of the theory willand watches the trajectory being drawn in front of his eyes,
lead to a proper implementation on the computer. Second, ih 3D and in real time. Of course, that might require a lot of
might also become important in small machines to knowcomputer power, but above all it requires a clear understand-
how to move magnets using techniques of greater generalityng of the theory, so that the right computer classes can be
| should add that | have myself used approximate methodsritten while we wait for the fast hardware.
when appropriate, but find it satisfying to see them emerge By analogy to the kitchen, we need a virtual room in
from a correct theoretical framework. which to put our magnets and we need ideal fiducial frames
In this paper we will try to establish a close connectionon which the magnets are ideally located. This room is called
between the image of a magnet as it might appear on a conthe tunnel by accelerator physicists. We call the set of all
puter screen or in one’s own brain and the actual map whicfiducial frames the layout of the ring, just like the layout of
propagates particles across the device. In particular, undehe kitchen. This layout, as shown in Fig. 1, contaiRsin-

certain conditiongmagnet independence, Sec. )lAve will  carg surfaces of sections. These sections have frames of
show a direct link between the rotational-translational prop+eference at location®; andO,. In a computer code these
erties of the image and that of the map. local frames can be described in terms of a universal frame at

The connection between the picture-object and map€); however, the tracking will be local and will not usk In
object can be best understood by using simple analogies. Fother words, the tracking code gives a prescription for car-
example, certain department stores have installed virtual raying the state of the systefusually three coordinates and
ality systems to allow their rich clients to test the design ofthree momentafrom the frame atO; to the frame atO,.
their future kitchen. The client, wearing a head-mounted diSThjs prescription, called a transfer map, we denoteZby
play and special gloves, opens the doors of the various cabirracking proceeds iteratively in the obvious way: the results

nets and drawers of the kitchen while an operator impleyt o, are then propagated locally to the next surface of sec-
ments on the spot the client's suggestions. Clearly, in th?ion ato usingZ
3 23-

case of a virtual reality kitchen, little of the kitchen function- Now we imaaine a phvsical obiect being lowered into the
ality is programmed. While the client can open the door of . . g pny J 9] .
ring. In Fig. 2 we see a layout frame @t;, situated in the

the oven, he cannot cook a virtual turkey in it. At the other . .
extreme, many of us have seen the “holodeck” of the popu-mlddle between the planes @ and O,. We will say that
he magnet is in its ideal layout position if and only if the

lar science fiction series Star Trek: The Next Generation. | S .
this virtual reality machine of the future, the computerized rame attached to the magnet@t coincides with the frame
objects have not only shapes and forms, but have also th(?ef the layout atO,,. Moreover, for the purpose of tracking,
full functional attributes of their real counterpart; thus Cap-€ must attach, to the magnet two frames, onéDatand
tain Picard can really cook himself a virtual egg in his holo-2nother one a5, whose positions relative 0" are iden-
deck! tical to the positions 0D, and O, relative toO4,. We will

In the case of accelerator simulations, our theoretical gogSsume that the person who wrote the tracking code did his
is to set up a framework which is more than the departmenjob correctly: his routines give us the mgp ,. in the body
store setting, but certainly much less than that of the sciencigame attached to the magnet. It relates the coordinates at
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FIG. 1. Layout of a planar ring. FIG. 2. Displacement of a magnet within the layout.

O, to those atO;. For example, in the case of a normal

quadrupole, the maﬁl,z, will have midplane symmetry. In
the usual linear approximation, the transverse part of the mal

is made of two uncoupled twix two blocks. It really does | s
into the layout dynamicsstdependent Hamiltonian to use

not matter where this map will end up. The nﬁgpz, always ) . ) ;
remains the same. However, the actual map produced by th%ccelerator jargof? It appears as a divergence in the various
maps. Indeed, if we rotate a magnet in the plane of the ring,

qguadrupole in the actual ring may be different. For example, . -
if a simple rotation of 90° around the longitudinal axis is e Should getinto trouble as we approach 90° since the map
attached to the magnet would then propagate rays in a direc-

htéon perpendicular to the tunnel direction. Beyond 90° par-
theory presented in this paper applies for any representatidff'eS Would actually reverse direction, which is absolutely
of the map: symplectic integration, Taylor series, etc. forbidden. This |_mpI|es that a rotat|0_n in the plane of the ring
The tracking code with no misalignments capability puts"WN0Se purpose is to rotate ma®t pictures should contain
the prime body frames right on top of the layout frames.2 divergence at 90°. Thus the Euclidean group when applied
With our choice of frames and conventions, the ideal placeto the dynamics of the layouti.e., dynamical Euclidean

ment of the body ma@’l/z/’ which we denoted by, is given group cannot be a global representation of the group. Even
by the formula though the usual group and its dynamical representation are

isomorphic in the neighborhood of the origin in parameter
o= [0 1= L1000 (1)  space(Euler angles plus translationghe isomorphism can-
not be global. Our discussion will start with the so-called
For our quadrupole example this means that a perfect normathin block” representation of the dynamical Euclidean
quadrupole acts as one if placed in its ideal position in theyroup because its transformational properties are identical to
tunnel. Notice that the placement mép’] is the identity.  that of a graphical object. Thus it is the simplest and most
This is the result of a convention: the body frames and theransparent representation of the dynamical Euclidean group.

The theory implemented in our code does not permit this.
ow is this restriction visible in an exact reformulation of
he time-based dynamigse., the usual equations of motion

performed, then the actual layo(@r tunne} map ¢, will be
that of a skew quadrupole. In passing, we should say that t

layout frames are matched to one another. It is also sufficient in large machines because the angle
The purpose of this paper is to derive the effect of ad,, between layout planes is small.
Euclidean transformation on the mé&p ,, which is locally Unfortunately, in the case of the thin map representation,

accurate. What does this mean? It is important to notice thatnwanted singularities will appear even if the actual dis-

the maps in a layout relate dynamical quantities not from glacements of the magnet are infinitesimal. The source of
time t; to a second timé, but from a plane 1 to a second these divergences is, as we will see, a rotation of magnitude
plane 2, which are approximately perpendicular to the actuatqual to half the angle between the entrance and exit plane.
physical tunnel. The existence of these maps assumes thahis poses a serious problem for a bending angle near
the trajectories of interest move forward as time increasesl80°, which can be found in small machines. We say that
This is not necessarily true for any possible trajectory. Foisuch a representation is not locally accurate. Our goal is to
example, a low energy particle entering a quadrupole offmanipulate this thin representation so as to cancel the diver-
axis could reverse direction if the field is sufficiently strong. gences: the representation is then locally accurate and ex-
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pressed in terms of the usual graphical Euclidean group of B. The geometrical object

3x3 matrices and translations. , _ Here | must first summarize results from REf] using a
The rest of the paper is divided into four sections. Theslightly different language. Originally the Euclidean group

following section contains a discussion of the usual Euclid-yts on points in our usual three-dimensional world. In the

ean group and its application to the usual time-based dynamggitional geometry one can use coordinatesifnto de-
ics. In Sec. lll, we discuss two possible “transparent” dy- seripe this space. These coordinates give us the location of a

namical representations Whic_h are relatively easy to deri"%oint with respect to a poir® called the origin. Vectors can
but not locally accuratéthe thin block and the 180° repre- be defined vaguely as “arrows” originating at a pokand

sentations In Sec. IV we derive the locally accurate repre- . . . . —
sentation associated with our Euclidean representation. It igndmg ata pomB: Th|s vector is called fche vect@rB. Thus_
our vector space is isomorphic 5 and its associated point

done with the help of the “transparent thin block” represen- A Lo - .
tation. Finally, in Sec. V, we reproduce some trivial results:((.)r affing space require®™ and an originO. (Mathemat-

based on the small angle approximation using the Iocall)?'an.sf define affine spaces out of vector spaces in a counter-
accurate representation of Sec. IV Intuitive manner; here we intend to move ordinary graphical

objects and thus our old Euclidean space of points is our
fundamental space from which vectors emerge. We, human

Il. ORDINARY EUCLIDEAN GROUP beings, live in an affine space of points, not in a vector
_ space).
A. Magnet independence A point A in an affine space can be located using three

Equation(1) assumes that the map of a magnet does nobasis vectors ifit® and the originO. To do this we consider
depend on its location in a beam line. This is an idealizatiorthe vectorOA, i.e., the “arrow,” between the origi® and
upon which most tracking codes rely. In reality, however,point A. This vector can be written uniquely in a basis of the
physically different magnets can interfere with one another ifyector spaceR®. Thus we introduce a basishy b2 b3).
their fringe fields overlap. In that case they cease to be inderhere exists a unique set of coordinates \,,\3) such
pendent from a dynamical point of view. Indeed the mapihat
le can depend on the presence of another magnet. 3

There is also the issue of space charge. One can show that OA= E \B )
it is not possible to define rigorously a propagator between =T

layout planes for entities which are spatially extended an - L
self-interacting. One can see this by imagining two strong| t should be noted that the origin can be chosen arbitrarily.

interacting particles: particle 1 is in the space between thé. h.e coordlr_1ate9\i are called the coordinates of the point
layout planes aD; and O,, while particle 2 has moved A in the affine basis@,b*,b? b°). _
forward and is between the planesGat andO,. If the mag- The three-dimensional picture of a magnet, like any
net betweerD, andO, is displaced, then propagation of the Physical object, can be viewed as a set of potdefined in
particle betweerO, and O5 will be affected through the @ “body _frame” attached to the. magnet itself. In this paper
interparticle forces. This will be true even if particle 2 comesWe consider that the set of poin@ belongs to a separate
suddenly into existence in th®,-O; magnet. It is most im-  affine space, the space of the magnet. The action of placing a
portant to realize that particle 2 is ndirectly affected by the ~Magnet in a ring consists in relating the points of the magnet
motion of theO,-O, magnet since it is already in th®,- © th_at_of the layout th_rough an isomorphism of affine space.
O, magnet and, by assumption, it does not see the field frorﬁ\g_am it is useful to think in terms of a CAD program: each
the 0,-0O, magnet. However, the trajectory of particle 2 will Object allowed by the prograrfwood beam, steel beams,
be modified as it senses a different field coming from particleairs, toilet bowls, etzmust be defined internally indepen-
1— different from the field it would have felt had the trajec- dent of their final location. Typically the user moves this
tory of particle 1 not been modified by the displacement ofdraphical object with a mouse or a virtual reality glove until
magnetO,-O,. Thus it is mathematically impossible to de- it sits in its desired I(_)catlon. The same is true with our mag-
fine an isolated propagator for each magnet. net. We must move it arounq until it sits _be.tween the appro-

We conclude that magnets can be interdependent in sefiate layout planes. At this stage their is no dynamical
eral ways: (i) mechanically by being physically linked to Meaning to all of this. _ _
each other(ii) magnetically by having their fields overlap, ~ We say that a poin& e Q has coordinates\i,Az,As) in
and (i) dynamically by allowing strong interactions be- the body frame ©’,b’,b’2,b"3) if and only if the vector
tween particles. P

Whatever source, this interdependence negates our abilit)Q A is given by
to translate the operators of the Euclidean group acting on a — 38 L
graphical objectfor example, the picture of our magnet in a O'A =E AR 3
CAD progran) into a well-defined operation on the map =1
le propagating observables between the layout planes &dthe body frame is attached to the magnet, and moves with it.
0O, andO,. Thus from now on | will assume that the magnet If, let us say, a dot is painted on the magnet, its coordinates
of interest is independent. A body propagator attached to thi the body frame are a set of three numbers which will never
prime frame can be defined, and for small motions of thechange.
prime frame within the layout, the body propagator is unaf- Mathematically the placement of a magnet in a tunnel can
fected. be viewed as an isomorphism between the affine space of the
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layout with its frame Q1,,b3,,b%,,b%,) and the affine space dicular to the door frame by a distance of 3 meters,” it is

attached to the body of the magnet. In the case of a perfeétlikely that she will understand. I can change the basis to

placement, the affine basi®(,6'%,6’2,6'3) is mapped into feet*or centlmetersz but it will still remal'n unclear. The vec-
1 R tor A belongs to this category of coordinate free statements

the layout basis @,bl,,b2,,b3,) which is located conve- > = . . ;
niently, but arbitrarily, between the two layout planes located" Wh".:h the aff_me Euclidean group acts. However, being
hysicists, we will need a coordinate frame after all. Thus we

around the magnet. These frames are depicted in Fig. 2. THE

X . , xpress the final displaced coordinates in terms of the ideal
point A on the magnet, let us say our painted dot, is mappe ; ; . .
. . coordinates. These ideal coordinates are just the body coor-
to a pointB in the layout spacéor tunne) using the formula

dinates due to the convention of Ed),
3

OB =1(O’A)=> \I(b' S N
(O'A)=2 Nil(b") OB= 3 {A-bl,+\R; b,

3
> 3

2, Ml @ _ S (G-Bhyt Ry,
where the transformatioh connects the two bases trivially.
Equation(4) is the graphical equivalent of E¢l). | should
emphasize again that the coordinate#\dh the body frame . R
are forever fixed, while its location in the tunngle., the E-'(N\)=d+RI\. (6)
pointB) depends on our placement of the object. We are free
to drop the magnet anywhere in the tunnel. Indeed, let Ushe “vectors” d andn are coordinategor componentsde-
translate and rotate the magnet away from its ideal Iocatiogcribing the position oB in the layout basis aO;, (see
by a transformatioric. This is done by translating the origin again Fig. 2. For reasons that will soon be apparent, |

of the magnet and rotating its axis vectors: choose to define the mdp acting on the coordinates to be
OB=E(C'A) E(N)=R(X—d). @)
3
=&+ NR(D' C. Application to time-based dynamics

in Cartesian coordinates

As we have said above, our propagators describe motion
from one cross section of the tunnel to another. By contrast,
ordinary Hamiltonian dynamics describes propagation from
a timet, to a timet,. If we apply a Euclidean transformation
vectors attached to the body are mapped into a rotated sdf @ time-based propagator, then the entire “universe” is
The pointB corresponds to the physical location in the tun_rotated or translated. Furthermore, since time is left invariant
nel of the pointA attached to the magnet. Of course they areby this transformation, the actual transformation is a trivial
physically superimposed and one could purposely confuséxtension of the usual geometrical picture. We simply have

them. Indeed one could view the entire process as a change > o e N
of coordinates for a fixed poirk in the layout: this is math- E(q.p)=(R(a—d).Rp). (8)

ematically correct but does not fit well in our view of the ) , , ,
magnet as an entity existing on its own. For example, thaJow let us derive the effect of this Euclidean transformation

by assuming that a single magnet composes our universe and
that it is rotated according to E¢6). In the original configu-

3
=&+ 2 \R;jbl,. (5)

In Eq. (5), the origin of space is shifted by, and the basis

point A may refer to the position of our painted dot on the

magnet while its position in the layouB, may not remain : 9 _ .
constant as the magnet vibrates or is moved by humans. ration, before the application of a Euclidean transformation
E, we have by assumption the propagator from titpeo

Finally, let us express the effect of the Euclidean transfor-- _
mation E on the coordinates. In all the above formulas weltlme ta!
have carefully avoided the usual confusion between a vector

and its coordinates. For example, the veclorefers to an 2;={y, 1,(21),  where z=(q,p). C)
actual displacement, not its coordinates. This displacement
exists, is well defined, and is unique. It cannot depend on th@s we rotate the device, the map retains its functional form

choice of basis. This coordinate free language often seemg coordinates? attached to the magnet. Furthermore these
very abstract io _physmsts: the language of differential 9€OM% s ordinates will transform like the affine coordinatesf the
etry. However, it is the usual language of our everyday ex- . .
. X . geometrical object. We thus have
perience with the Euclidean group. Indeed when | tell my
daughter “move your bike away from the door and put it 1 R
against the fence,” the six year old understands immediately E(Z)=2
what translation should be performed. If | replace this state-

ment by the phrase “move your bike in a direction perpen-and
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22:2 (21) In the case of a time-dependent Hamiltonian, the results are
1t identical since the Euclidean group does not affect time.
I Thus the rotated map is generated by the rotated Hamiltonian
HeE:

2= (B T 0y, 1 2B)(22). (10 (HoE)(G,p:t) = H(E(G, ;1) = H(R(G—d),Rp;1).
(16

D. Connections to lie operators: Time-based dynamics . o .
N.B. This definition does not assume symplecticity. If the

O_ur derivation O.f the locally correct_represen_tatlon of themapg is generated by a fordeg, it can still be rotated and the
Euclidean group will make use of an isomorphism between - . , .
X . L compositional map can still be defined using Etfl).
various Lie algebras. Thus let us make contact with Lie op- .
erators by introducing the new type of mad 2SSOCi So far we have looked at the effect of the Euclidean group
y 9 yp =ty on a graphical representation of the magnet and on the time-

ated with the transfer maﬁﬁtz. It is defined as follows: based dynamics. In both cases the three rotations and three

given an arbitrary functiori of phase space, translations act linearly on either position spdgeaphical
or on the full phase spacgn Cartesian coordinatgsOur
Mtlﬂtzf:fOZtlﬁtz ultimate goal is to apply the Euclidean group on the map

le of the layout based dynamics.
or

. L . Ill. EUCLIDEAN GROUP FOR THE LAYOUT:
Vz(My ., D)D) =1(,1,(2). 11 THIN AND RACETRACK REPRESENTATIONS

One can see in Eq11) that the mapM, _,. transforms an In' the preceding s_ection we introduced_the action of thg
12 Euclidean group as it acts on the usual time-based Hamil-

argltrary function f ,Of phase spaf:e '|nto a ne'W functlon tonian in Cartesian coordinates. Strictly speaking it is a “dy-
foli,—.t,- It does this by composingi.e., substituting or pamical” representation: we have in E@.6) a prescription
“plugging in”) the original function with the usual transfer for rotating and translating the functidt and thus the map
mapZtrtz' It is this mapj\/[tl_qz which can be expressed in it generates. However, the reader will agree that it is a trivial

terms of Lie operators. For this reason we called such maprescription. One needs only to double the dimensionality of
“compositional” maps. One should also point out that this the space since momenta will transform like positions under

definition as well as the existence of Lie operators extends t§Ptations. Translations are even simpler: they still only affect

nonsymplectic maps as found in electron rings. In the case df'€ Positions. . . :
symplectic compositional maps the Lie operators reduce to 1he dynamical group associated with the layout dynamics
the usual Poisson bracket operators. is, on the other hand, less trivial. By introducing a map for

Defining a similar compositional map for the transforma- €ach magnet, derived from a position-based Hamiltonian, we

tions E and E~%, we conclude that the new compositional &€ NOW in a position to rotate anq trans_late an individual
magnet and its map. From the point of view of the global

time-basedH the magnet is a spatial fluctuation of the func-
B - tion H and the dynamical group of the layout rotates and
EMy ] =EMy € (12 translates these individual fluctuations. The condition of

magnet independence discussed above insures that this local

For example, if the mapftﬁt2 is generated by a time-
independent HamiltoniaHl, then the solution 1‘017\/lt1ﬂt2 is

just

map & M, _,] associated withE ~of, _ °E is given by

Mtlatzzexp(: —(t,—tH:). (13

Here we follow the notation of Dragt for the Poisson bracket
operator associated to a functibn

f:g=[f,g]. (14

The transformed maﬁ[MtoHtl] is given by

& [Mtlﬂtz]:‘SMtlétzg_l \ /

=Eexpi:—(t,—t))HHE?L \ @y

=exp(&:—(t,—tH:EY) . .
FIG. 3. Rotation of a bend and the failure of the usual formula
=exp(: — (t,—t)HeE:). (15  of time-based dynamic§See Eq(12).]
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fluctuation of the globaH is rigidly attachgd to the physical Mp]=EME L (17)
magnet. Thus we should be able to derive the effect on the ) o o

map in a way which parallels closely the effect on thelWe assume that, prior to the applicationfthe map in its
graphical objects. In the jargon of object-oriented programideal position is matched to the layout as in E).] The
ming, we expect that it should be possible to use functiof€aSOns for this are simple: after rotation, the entrance and

overloading or virtual functions to relate the graphical and€Xit frame of the body do not coincide with those of the
dynamical actions. layout. By analogy with time based dynamics, we say that an

In this section | will summarize results obtained in Ref. arbitrary Euclidean transformation will mix up the timelike

: . : .~ coordinate of the layout representatithe usual ‘s” vari-
glr]oﬁ(;ncernmg the dynamical representation of the Euclldeagble) with the dependent phase space variables,

B. The thin block method

A. Failure of Eq. (12) In Ref.[1], we used a trick to rotate the magnet correctly.
Consider gbending magnet placed in the layout between It can be seen that the failure of the usual formula is con-
two planes bisecting each other at an arblg. In Fig. 3we  nected to the finite distanc®;0, between the planes at-
performed on it a simple rotation in thez plane. As one tached to the body. Thus we should consider rotating a zero
can see, it is incorrect to state that the rotated #japt,,] is  length magnet. In Refl], we gave a formula fo€[ M 5]

given by (dropping the primes from now ¢n derived using the thin magnet concept:
€ [Mug] = YATPET VY12 My Yy~ AT 12 g1 1202, (19
thin map
|
The extraneous maps involved are a rotation inxtteeplane Time Layout
of half the layout angle and a drift of half the distance be- D D \/ﬁ
tween the layout planes. z z (1+6)°—px—py
Lo YPmzpy yV(1+87—pi-p; (Y
+1/2 Dy, Ly ZPXp, —XV(1+5)2—D§—D§
V- ZQX%ZITLB,I), L, XPy—YPx XPy—YPx
C. Layout divergences: The need for a locally
0,0, accurate representation
T; 1= ex;{:i 2 Pz ) (19) One can check that the Lie algebras of the time and the

layout representation are identical. However, the transfer
maps associated to these Lie transforms are quite different.

In general, the operatd& can be written as Most important to our discussion is the mgH2 This com-
positional map is in fact a drift in polar coordinates; its as-
sociated transfer map is given by the formula

&a,05=TiRap X
- > > > new_
=exp:d-p:)exp(#:B-L:), X ptan )\’ (22)
cogf)|1— ———
Pz
where PI"=p,co8 6) + Sir O)p,, @3
_— tan( 9)
||:8||_1 (20) new_ +L 24
y"*i=y ogar(d)| (24)
P
In summary, there are two differences between the time- z
based and layout-based represer_]taticé'r)§the presence of p;ewz Py, (25)
operators to make the magnet “thin,” arid) the functional
form of the generatorsp: and i:. Indeed, the Euclidean Jrew_ 4 (1+6)xtan(9) 26
transformations which affect the coordinate along the direc- S ptan(6)\’ (26)
tion of propagation(* z” or “ s ) are different and lead to Pz 1_p—
z

nonlinearities as well as divergences for rotations of 90°.
Here is a table of the various Lie generators. where
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p,= J1+ 5)2—p§—p§. interest always go forward. We can see that application of
the thin block method to an 180° racetrack magnet will al-
We notice that this map becomes increasingly ill-behaved aways fail. One way to try to solve this problem is to derive,
we approach an anglé of 90°. The problem is inherent to using geometry, formulas which apply to the 180° bend and
the thin map trick. In order to make the magd, “thin,” use them for layout angles near 180°. It is possible to do
one must change the layout planes by rotating them by haBuch a thing because the geometry of a racetrack is simple.
the layout angle. However, the layout angle is not completelyThis result is given by the following complex set of formu-
arbitrary since it must be assumed that the trajectories dfs:

E[Mig] = )7142/2,];—1/25'”/2 7;1/237;/12/2/\41237_/12/27;_1/2 5—1/27;1/2);142/2

m -7 -

(27)
180° racetrack
[

where ometry. However, it is instructive to derive it from the thin
map representation by assuming that the dynamical and geo-
$12 _m=Py metrical Lie groups are isomorphjahich they ar¢and both
Vs mia= exr{ T Ly')’ (28) global (the dynamical group is nptThe idea is to commute
the operatofo=exp(: — (7/2) L, :) past the various opera-
0,0, tors of the thin map representation. This is a suspicious op-
5 x'), (29 eration since the dynamical version of this operator is ill-
defined. But, using the isomorphism, let us derive the effect
of the operatowr using the time-based version of our group
(which includes the geometrical group trivigllyFirst we get

Fml.

T V2= exp(:i

Erpp=exp(:dyp,+ dypy_ d.px:)

X exp(0: ByL,+ ByLy— B,Ly:), (300  the following trivial results foro:
- 0,71
5—717/2: exp(6: BxL,— ByLy_ﬂzLx D) X7
Xexp(:dyp,—dypy—d,py:). (31
Px— Pz,

One can see that the effect on an 180° layout can be gotten
from the thin layout result by a mere relabeling scheme and
a few minus signs. One can check that some obvious results
are correctly predicted by the above formula. For example, if
we apply it to a semicircular magnet, a displacemerd,ah Pz— —Px- (32
the body prime frame corresponds to a driftigfat boththe
entrance and exit planes. By contrast, a straight elemerfow let us take the operators on the left side/df, in Eq.
would be sandwiched between a trivial translatiordpand ~ (18) and introduce the identity map asr~*:
its inverse as one would expect. The result for the semicir-
cular racetrack is obvious to anyone who has played with @V/273%¢7; /2
train set.

With the thin lens representation and the racetrgck repre- :yl/z(mfl?i/zaaf oo 1T, V25 =1y~ 12
sentation, we have somewhat reduced the gravity of the
problem. Clearly, for maps with layout angle around 90°, our

Z— —X,

—1/2

two representations will be equally go6ar bad on average. =2 oxp - 0,0, _, -1g
. . . . . . . . =V _ T~ 0 PO g
Certain trajectories will be lost in the manipulations even if 2
the effect of the Euclidean transformation is near identity. 0.0
Thus we are lead to the “locally accurate representation.” ><exp( S N o y2 (33)
: 5 V-

IV. THE LOCALLY ACCURATE REPRESENTATION
) . i . i The operatow &0 is also evaluated by moving into the
The techniques we will use involve the manipulation andexponent:

metamorphosis of ill-defined operators into a well-defined
one. First let us apply this technique to link the thin map and e 1 s s s
180° representations. o “Eo=o “exp:d-pexp(6:4-Li)o
=exp:d-o pexp(:B-0 1L:). (34
A. Commuting ill-defined operators
As | have said, the racetrack representation can be derivéd/e must evaluate the effect ofon the six Lie generators of
by pure geometry and was indeed first derived by pure ge€. Using Eq.(32) we conclude that
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o1 0
X— Z, R . 0

D=(1-R,3) : (38)

Px— Pz, 0192

Pz— — Px, and then to the right-hand side
Li—Ls, T,V T =T (39
Now we substitute Eq€38) and (39) into Eq. (18):
L,——Ly (35
5[./\/[12—' — yl/ZIZBgyf 1/2./\/!123}7 1/2,2; 1/257 175:)}1/2.
Thus Eq.(33) is further modified into 40
(40)
0.0 To proceed further we use the following property of rota-
Weqtizer 2= Y12 ex :—l2 20‘1pz:)a‘1&r tions: If
0,0 O A -
><exp(:— 12 201p2:>yw,12’2 exp (7 ra-L -)Jq = Ryzq
0,0 R
= y”fﬂzex% - 172 Py ) o o then
0.0 Ryaexp 6:3- I::)R;&lzexp( 6:{R;5ﬁ}- L. (@D
B e AP PN V7
><exp<. 2 px')yﬂz This allows us to get rid of the map®? by moving it into
the exponent of:
=02 Ty TV (36)

The right-hand side of Eq18) can also be manipulated so as

to produce the rest of the 180° formula.

B. Derivation of the locally accurate representation

Now one must ask how the miracle happened in the pre-

Ed,0pl Ma2l

=VT5 . gV PRy -12 MR gy125Y Y75 g)M?
=Ty-125+d Roy-v2M1oR — gy125Ty15 -Gy

= ’TA"inR‘g‘éinM 1R_ géout’]—_ Aout

ceding section. Strictly speaking, the isomorphism does not = o M Zgjl )
apply if the operators multiply each other into one of the Al g/ ¥112% Kout g gout:
rotations, which is not defined in the dynamical representaThese new inputs are all Computab|e using Simp|e linear al-
tion. However, they apply to operators in the neighborhoocbebra,

of ill-defined operators even though the validity of the dy-

(42

namical representation is restricted to an area of phase space An=Y~YB+d}, (43

which is vanishingly small as we approach critical anglest

such as 90°. The idea behind the “locally accurate represen- B‘”=Y‘1’2B, (44

tation” is to remove from the thin map representation all the

maps which are “large,” i.e., those that depend on the layout AoUt=y12(p5 —d}, (45)

angle. This is done by moving them into the exponents and _ .

then using the isomorphism to recompute the exponents. BU=Y23, (46)
Proceeding as if we are in the time based representation,

we derive a trivial identity concerning the commutation of 0

translations and rotationisumming over repeated indiges D=(1—R0’;1) 0 _ 47)

RogTd0i=Rop{di—di} 0142

={R;;q;—d;}

=Rij{aj— Ry'dy}

=Tr-1a{Rijq;}

=Tr-14R 39 - 37

We first apply this formula to the left-hand side of E48),
T%’zé‘?’; 12_ T5E,

where

Y2 is a 3x3 matrix corresponding to a rotation df;, in
the x-z plane.Y 2 is its inverse.

C. What have we achieved?

The final form for the displaced mafy 5[ M,] consists
of a dynamical operator acting at the entrance and a dynami-
cal operator acting at the exit. These operators have the most
obvious physical interpretation. The first or&in 4z, is a
collection of drifts and coordinate changes necessary to
move a particle from the layout frame @; to the body

—1 . .
frame atO; . The second operatofﬂom‘ gpous 1S @ collection
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of drifts and coordinate changes necessary to move a partictbere must exist in this layout slot a bending element which
from the body frame aD, to the layout frame aD,. Allthe  bends the ideal particle b$,,. Let us call the map for this
factors entering in the construction of these operators arélementsS. In units of magnetic rigidity 8,), the value of
small if the displacement of the magnet is small. Therefordhe B field is just 1p;,, the curvature of an ideal trajectory
these maps are locally accurate to the extent that the amouBetween plane 1 and plane 2. Then it is postulated that the
of phase space lost due to the nonlocality of the dynamicdiotation of this element along theaxis by an angled, has

representation is proportional to the actual displacement anV0 components: first there is a change of coordinates at the
not to the layout angleb,,. entrance and exifas in a straight elemengiven by a rota-

Moreover we have derived the local dynamical resultsiion R,
directly from the geometrical operator. The geometrical op-
erator requires one fiducial frame of reference attached to the Ro,=exp(0;:L;), (48)
magnet which, in the ideal positioning, is superimposed on a
fiducial frame of the layout. The displacements of the geo-and second, by rotating a bend, we create a small component
metrical object are an exercise in relating these two framesf the B field in thex direction of magnitude sir)/p;,. The
By using the thin magnet trick, we can use the geometricaéffect of this component is to leading order given by the map
formulas to produce the dynamical representation. Then, by
using our isomorphisms, we commute all “big operators” sin(6,)L 4,
necessary for the thin map trick until they cancel one an- ex;< -y
other. We have then succeeded in relating layout planes to
body pl_anes i_n terms of_the geometr_ical fiducial ffa!mes With'We can then combine all of this into the following symme-
out using mind boggling geometrical constructions. Ourtrized expression for the rotated map:
methods have two clear advantages, as follows.

(i) If someone decides to change the fiducial frames, the 0 0
results of this paper provide an immediate algebraic prescrip- R, [S]=R, exp( - —Z<D12y>8exp< _ @12)/) R,L
tion for the derivation of the locally accurate representation  ° z 2 2 2
in terms of the new frames. One first produces the thin map (50)
representation in this new frame and second one commutes o
the layout operators using the above techniques. At no point This derivation seems to depend on the value of the bend-
does the geometry needed for the dynamical representatidid field, which we related to the layout angle for an ideal
exceed in complexity that of the geometrical objects. magnet. However, as suggested by the final answer and dem-

(ii) In addition, the spirit behind our methods fits the newOnstrated in the above sections of this paper, the small bend-
“object oriented” programming methods very well. It el- iNg introduced by the tilt is a property of t.he I_ayout alone. It
evates the map of the magnet and the geometrical picture #§ there for all possible maps one may stick in the layout.
the status of “objects” within the new programming para- Let us get the result of Eq50) using the locally exact rep-
digm. Obviously if a computer code knows how to picture resentation. First one notices that the vedogiven by Eqg.
the magnet on a screen as it movesGAD procedurg, it (47) vanishes for ark—y rotation. Thus we only have to
also knows(through function overloading, for exampleow  examineg™ and g
to propagate in the layout across the displaced element.

) =exp(— 6,P15y). (49
P12

On the last point it important to remember that the dy- 1 0 q>_12 0
namical structure of the map was of paramount importance 2
in the elevation of the map to the status of an independent R R 0 1 0 0
object. A magnet can propagate self-interacting particles and B=Y2p~
still remain a perfectly well-defined geometrical object, but _ <I>_12 0o 1 1
ceases to be a self-contained dynamical object. Of course if 2

the self-interacting forces are sufficiently localizézbam-
beam for example one can cheat and retain the dynamical
object in first approximation.

2
V. TRIVIAL APPLICATION: THE TRANSVERSE TILT fora small layoutangte| o |,
IN LARGE MACHINES 1

Many tracking codes in accelerator physics assume that
the small angle approximation holds. This is so ingrained in D,
the culture that it has become customary to refer to bends B
and quadrupoles as “linear elements.” In addition, the angle 123
®,, of the layout is also assumed to be small. Under these BU=Y B~ 0 : (51
conditions it is interesting to derive an approximate formula 1
for the transverse tilt of an element situated between layout
planes for whichd,#0.

Let us start with the “back-of-the-envelope” derivation Thus, following the results of Eq42), we get for the rotated
of this effect. First it is assumed thatdf,, is not zero, then map
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P P In conclusion, while it is nice to see usual results emerg-
Ro[S]=exp 0;:L,——- Ly |Sexp 0:L,—— Ly ). ing from the correct formalism, this is not the main message
(52) of this paper. The primary message is for those who use

object-oriented programming. One should use a theory in
Using the dynamical expression bf given in Eq.(21), we  which the “magnet” is an object from a graphical as well as

obtain a dynamical point of view. And, when acceptable approxi-
mations are introduced in the code, they should be done in
ex;{ 6. L _q’_lzl_ ) such a way as to preserve the magnet-object structure. One
zrmzo2 T should ask questions like “Can | put back the more precise

formulas easily?,” “Can | introduce the more complex small
P > machine integrators without restructuring the program?,” or
=exp< GZ'LZ_TV V(1+8) = pi—py: “Can | compute the effects of radiation and the stochastic
beam envelopes without yet another rewriting?” It is a dif-
_ 0L _q)_lz o 0. L.- . 0, D1 ficult task to keep all these questions in sight while designing
=exp bz:L, 2 y:|=exp(f;:L;:)exp : 2 y: an ideal code, however if at any moment one loses the ability

to rotate a magnet independently of the nature of its single

— R, exd :— 0:P12 | (53) particle map, one can safely bet that the structure of the
b ' 2 V) theory has been needlessly compromised in the code imple-
mentation.

from which Eq. (50) immediately follows. Here we have
made use of the smallness of the angles involved including
the momenta.

The reader with a purely analytical mind may say to him-
self the following: “The author has derived formu(&0) in | am particularly grateful to Leo Michelotti for preaching
two different ways, so what? Once we have the result wdhe object oriented approach to accelerator physics. In addi-
should just apply it independent of its source or origin.” tion, | am grateful to John Irwin, Yunhai Cai, and Chris
Although this is trueponly the correct formalism gives us a Iselin for listening to my ideas. | recognize Alex Dragt's
way to approximate the Euclidean group for small misalign-original work concerning the use of dynamical patches
ments and tilts without breaking the “object orientedness” (PROT as he called)iin accelerator simulations and for his
of a well-written code. Thus in a large machine with small suggestions in making an unreadable manuscript less unread-
bending angles it is preferable to keep the structure of Egable. Finally | am immensely grateful to Stefania Petracca
(42) and to approximate the various operators used in thisind, most of all, to Shuji Matsumoto of KEK for their line by
formula. line critique of the final manuscript.
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