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Locally accurate dynamical Euclidean group

Étienne Forest
National Laboratory for High Energy Physics (KEK), 1-1 Oho, Tsukuba, Ibaraki 305, Japan

~Received 29 May 1996!

We derive the locally accurate representation for the dynamical symplectic group for a beam element
immersed in a field-free region. The results are expressed in terms of the displacement of a fiducial frame in the
usual Euclidean space. The method does not involve geometrical constructions of a complexity exceeding that
of a usual change of basis in Euclidean space. The extra complexity is handled by algebraic manipulations
connecting the Lie representation of the usual Euclidean group with its dynamical equivalent. This is achieved
by eliminating potential divergences in the ‘‘thin block’’ representation. Although this representation is ideally
suited for large machines, it fails in the neighborhood of 180° racetrack magnets due to these divergences. All
operations described in this paper can be fully automatized in a computer code.@S1063-651X~97!11403-9#

PACS number~s!: 29.20.Dh, 41.85.Ja, 41.85.Lc
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I. INTRODUCTION

The introduction of the Euclidean group of translatio
and rotations in the realm of particle tracking codes has
purposes. First, in this day and age of ‘‘object-oriented p
gramming’’ it forces an immediate crystallization of the co
cept of a map between two layout planes as the central ob
of a tracking code. A proper understanding of the theory w
lead to a proper implementation on the computer. Secon
might also become important in small machines to kn
how to move magnets using techniques of greater genera
I should add that I have myself used approximate meth
when appropriate, but find it satisfying to see them eme
from a correct theoretical framework.

In this paper we will try to establish a close connecti
between the image of a magnet as it might appear on a c
puter screen or in one’s own brain and the actual map wh
propagates particles across the device. In particular, u
certain conditions~magnet independence, Sec. II A!, we will
show a direct link between the rotational-translational pr
erties of the image and that of the map.

The connection between the picture-object and m
object can be best understood by using simple analogies
example, certain department stores have installed virtua
ality systems to allow their rich clients to test the design
their future kitchen. The client, wearing a head-mounted d
play and special gloves, opens the doors of the various c
nets and drawers of the kitchen while an operator imp
ments on the spot the client’s suggestions. Clearly, in
case of a virtual reality kitchen, little of the kitchen functio
ality is programmed. While the client can open the door
the oven, he cannot cook a virtual turkey in it. At the oth
extreme, many of us have seen the ‘‘holodeck’’ of the pop
lar science fiction series Star Trek: The Next Generation
this virtual reality machine of the future, the computeriz
objects have not only shapes and forms, but have also
full functional attributes of their real counterpart; thus Ca
tain Picard can really cook himself a virtual egg in his ho
deck!

In the case of accelerator simulations, our theoretical g
is to set up a framework which is more than the departm
store setting, but certainly much less than that of the scie
551063-651X/97/55~4!/4665~10!/$10.00
o
-

ct
ll
it

ty.
s
e

m-
h
er

-

-
or
e-
f
-
bi-
-
e

f
r
-
n

he
-
-

al
nt
ce

fiction creation. Here, as in the case of the virtual kitchen,
will be able to grab a magnet and move it. However, as in
‘‘holodeck,’’ we also derive the effect of the magnet di
placements on the particle trajectory. In other words o
framework, under the condition of magnet independen
will permit the realization of a virtual reality program i
which an accelerator physicist grabs magnets, moves th
and watches the trajectory being drawn in front of his ey
in 3D and in real time. Of course, that might require a lot
computer power, but above all it requires a clear understa
ing of the theory, so that the right computer classes can
written while we wait for the fast hardware.

By analogy to the kitchen, we need a virtual room
which to put our magnets and we need ideal fiducial fram
on which the magnets are ideally located. This room is ca
the tunnel by accelerator physicists. We call the set of
fiducial frames the layout of the ring, just like the layout
the kitchen. This layout, as shown in Fig. 1, contains~Poin-
caré! surfaces of sections. These sections have frame
reference at locationsO1 andO2. In a computer code thes
local frames can be described in terms of a universal fram
V; however, the tracking will be local and will not useV. In
other words, the tracking code gives a prescription for c
rying the state of the system~usually three coordinates an
three momenta! from the frame atO1 to the frame atO2.
This prescription, called a transfer map, we denote byzW12.
Tracking proceeds iteratively in the obvious way: the resu
atO2 are then propagated locally to the next surface of s
tion atO3 usingzW23.

Now we imagine a physical object being lowered into t
ring. In Fig. 2 we see a layout frame atO12 situated in the
middle between the planes atO1 andO2. We will say that
the magnet is in its ideal layout position if and only if th
frame attached to the magnet atO8 coincides with the frame
of the layout atO12. Moreover, for the purpose of tracking
we must attach to the magnet two frames, one atO18 and
another one atO28 , whose positions relative toO8 are iden-
tical to the positions ofO1 andO2 relative toO12. We will
assume that the person who wrote the tracking code did
job correctly: his routines give us the mapzW1828 in the body
frame attached to the magnet. It relates the coordinate
4665 © 1997 The American Physical Society
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O28 to those atO18 . For example, in the case of a norm

quadrupole, the mapzW1828 will have midplane symmetry. In
the usual linear approximation, the transverse part of the m
is made of two uncoupled two3 two blocks. It really does
not matter where this map will end up. The mapzW1828 always
remains the same. However, the actual map produced by
quadrupole in the actual ring may be different. For examp
if a simple rotation of 90° around the longitudinal axis
performed, then the actual layout~or tunnel! mapzW12 will be
that of a skew quadrupole. In passing, we should say tha
theory presented in this paper applies for any representa
of the map: symplectic integration, Taylor series, etc.

The tracking code with no misalignments capability pu
the prime body frames right on top of the layout frame
With our choice of frames and conventions, the ideal pla
ment of the body mapzW1828, which we denoted byI , is given
by the formula

zW125I @zW1828#5zW1828. ~1!

For our quadrupole example this means that a perfect no
quadrupole acts as one if placed in its ideal position in
tunnel. Notice that the placement mapI @zW # is the identity.
This is the result of a convention: the body frames and
layout frames are matched to one another.

The purpose of this paper is to derive the effect o
Euclidean transformation on the mapzW1828, which is locally
accurate. What does this mean? It is important to notice
the maps in a layout relate dynamical quantities not from
time t1 to a second timet2 but from a plane 1 to a secon
plane 2, which are approximately perpendicular to the ac
physical tunnel. The existence of these maps assumes
the trajectories of interest move forward as time increas
This is not necessarily true for any possible trajectory. F
example, a low energy particle entering a quadrupole
axis could reverse direction if the field is sufficiently stron

FIG. 1. Layout of a planar ring.
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The theory implemented in our code does not permit th
How is this restriction visible in an exact reformulation
the time-based dynamics~i.e., the usual equations of motion!
into the layout dynamics (s-dependent Hamiltonian to us
accelerator jargon!? It appears as a divergence in the vario
maps. Indeed, if we rotate a magnet in the plane of the r
we should get into trouble as we approach 90° since the m
attached to the magnet would then propagate rays in a d
tion perpendicular to the tunnel direction. Beyond 90° p
ticles would actually reverse direction, which is absolute
forbidden. This implies that a rotation in the plane of the ri
whose purpose is to rotate maps~not pictures! should contain
a divergence at 90°. Thus the Euclidean group when app
to the dynamics of the layout~i.e., dynamical Euclidean
group! cannot be a global representation of the group. Ev
though the usual group and its dynamical representation
isomorphic in the neighborhood of the origin in parame
space~Euler angles plus translations!, the isomorphism can-
not be global. Our discussion will start with the so-call
‘‘thin block’’ representation of the dynamical Euclidea
group because its transformational properties are identica
that of a graphical object. Thus it is the simplest and m
transparent representation of the dynamical Euclidean gro
It is also sufficient in large machines because the an
F12 between layout planes is small.

Unfortunately, in the case of the thin map representati
unwanted singularities will appear even if the actual d
placements of the magnet are infinitesimal. The source
these divergences is, as we will see, a rotation of magnit
equal to half the angle between the entrance and exit pl
This poses a serious problem for a bending angle n
180°, which can be found in small machines. We say t
such a representation is not locally accurate. Our goal i
manipulate this thin representation so as to cancel the di
gences: the representation is then locally accurate and

FIG. 2. Displacement of a magnet within the layout.
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55 4667LOCALLY ACCURATE DYNAMICAL EUCLIDEAN GROUP
pressed in terms of the usual graphical Euclidean group
333 matrices and translations.

The rest of the paper is divided into four sections. T
following section contains a discussion of the usual Euc
ean group and its application to the usual time-based dyn
ics. In Sec. III, we discuss two possible ‘‘transparent’’ d
namical representations which are relatively easy to de
but not locally accurate~the thin block and the 180° repre
sentations!. In Sec. IV we derive the locally accurate repr
sentation associated with our Euclidean representation.
done with the help of the ‘‘transparent thin block’’ represe
tation. Finally, in Sec. V, we reproduce some trivial resu
based on the small angle approximation using the loc
accurate representation of Sec. IV.

II. ORDINARY EUCLIDEAN GROUP

A. Magnet independence

Equation~1! assumes that the map of a magnet does
depend on its location in a beam line. This is an idealizat
upon which most tracking codes rely. In reality, howev
physically different magnets can interfere with one anothe
their fringe fields overlap. In that case they cease to be in
pendent from a dynamical point of view. Indeed the m
zW12 can depend on the presence of another magnet.

There is also the issue of space charge. One can show
it is not possible to define rigorously a propagator betwe
layout planes for entities which are spatially extended a
self-interacting. One can see this by imagining two stron
interacting particles: particle 1 is in the space between
layout planes atO1 and O2, while particle 2 has moved
forward and is between the planes atO2 andO3. If the mag-
net betweenO1 andO2 is displaced, then propagation of th
particle betweenO2 and O3 will be affected through the
interparticle forces. This will be true even if particle 2 com
suddenly into existence in theO2-O3 magnet. It is most im-
portant to realize that particle 2 is notdirectlyaffected by the
motion of theO1-O2 magnet since it is already in theO2-
O3 magnet and, by assumption, it does not see the field f
theO1-O2 magnet. However, the trajectory of particle 2 w
be modified as it senses a different field coming from part
1— different from the field it would have felt had the traje
tory of particle 1 not been modified by the displacement
magnetO1-O2. Thus it is mathematically impossible to de
fine an isolated propagator for each magnet.

We conclude that magnets can be interdependent in
eral ways:~i! mechanically by being physically linked t
each other,~ii ! magnetically by having their fields overlap
and ~iii ! dynamically by allowing strong interactions be
tween particles.

Whatever source, this interdependence negates our ab
to translate the operators of the Euclidean group acting o
graphical object~for example, the picture of our magnet in
CAD program! into a well-defined operation on the ma
zW12 propagating observables between the layout plane
O1 andO2. Thus from now on I will assume that the magn
of interest is independent. A body propagator attached to
prime frame can be defined, and for small motions of
prime frame within the layout, the body propagator is un
fected.
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B. The geometrical object

Here I must first summarize results from Ref.@1# using a
slightly different language. Originally the Euclidean grou
acts on points in our usual three-dimensional world. In
traditional geometry one can use coordinates inR3 to de-
scribe this space. These coordinates give us the location
point with respect to a pointO called the origin. Vectors can
be defined vaguely as ‘‘arrows’’ originating at a pointA and
ending at a pointB. This vector is called the vectorABW . Thus
our vector space is isomorphic toR3 and its associated poin
~or affine! space requiresR3 and an originO. ~Mathemati-
cians define affine spaces out of vector spaces in a cou
intuitive manner; here we intend to move ordinary graphi
objects and thus our old Euclidean space of points is
fundamental space from which vectors emerge. We, hum
beings, live in an affine space of points, not in a vec
space.!

A point A in an affine space can be located using th
basis vectors inR3 and the originO. To do this we consider
the vectorOAW , i.e., the ‘‘arrow,’’ between the originO and
pointA. This vector can be written uniquely in a basis of t
vector spaceR3. Thus we introduce a basis (bW 1,bW 2,bW 3).
There exists a unique set of coordinates (l1 ,l2 ,l3) such
that

OAW 5(
i51

3

l ibW
i . ~2!

It should be noted that the origin can be chosen arbitrar
The coordinatesl i are called the coordinates of the poi
A in the affine basis (O,bW 1,bW 2,bW 3).

The three-dimensional picture of a magnet, like a
physical object, can be viewed as a set of pointsQ defined in
a ‘‘body frame’’ attached to the magnet itself. In this pap
we consider that the set of pointsQ belongs to a separat
affine space, the space of the magnet. The action of placi
magnet in a ring consists in relating the points of the mag
to that of the layout through an isomorphism of affine spa
Again it is useful to think in terms of a CAD program: eac
object allowed by the program~wood beam, steel beams
chairs, toilet bowls, etc.! must be defined internally indepen
dent of their final location. Typically the user moves th
graphical object with a mouse or a virtual reality glove un
it sits in its desired location. The same is true with our ma
net. We must move it around until it sits between the app
priate layout planes. At this stage their is no dynami
meaning to all of this.

We say that a pointAPQ has coordinates (l1 ,l2 ,l3) in
the body frame (O8,bW 81,bW 82,bW 83) if and only if the vector

O8A
——→

is given by

O8A
——→

5(
i51

3

l ibW 8 i . ~3!

The body frame is attached to the magnet, and moves wit
If, let us say, a dot is painted on the magnet, its coordina
in the body frame are a set of three numbers which will ne
change.

Mathematically the placement of a magnet in a tunnel c
be viewed as an isomorphism between the affine space o



fe

te
T
pe

.

re
u
tio
n

s
n
r
us
n

e
th
he

.
o
e
ct

e
th
em
m
ex

it
te
te
n

is
to
c-
nts
ing
we
eal
oor-

I

tion
ast,
om
n
is
ant
ial
ve

on
and

ion

rm
se

4668 55ÉTIENNE FOREST
layout with its frame (O12,bW 12
1 ,bW 12

2 ,bW 12
3 ) and the affine space

attached to the body of the magnet. In the case of a per
placement, the affine basis (O8,bW 81,bW 82,bW 83) is mapped into
the layout basis (O,bW 12

1 ,bW 12
2 ,bW 12

3 ) which is located conve-
niently, but arbitrarily, between the two layout planes loca
around the magnet. These frames are depicted in Fig. 2.
pointA on the magnet, let us say our painted dot, is map
to a pointB in the layout space~or tunnel! using the formula

OB
——→

5I ~ O8A
——→

!5(
i51

3

l i I ~bW 8 i !

5 (
i , j51

3

l ibW 12
i , ~4!

where the transformationI connects the two bases trivially
Equation~4! is the graphical equivalent of Eq.~1!. I should
emphasize again that the coordinates ofA in the body frame
are forever fixed, while its location in the tunnel~i.e., the
pointB) depends on our placement of the object. We are f
to drop the magnet anywhere in the tunnel. Indeed, let
translate and rotate the magnet away from its ideal loca
by a transformationE. This is done by translating the origi
of the magnet and rotating its axis vectors:

OBW 5E~O8AW !

5DW 1(
i51

3

l iR~bW 8 i !

5DW 1 (
i , j51

3

l iRi j bW 12
j . ~5!

In Eq. ~5!, the origin of space is shifted byDW , and the basis
vectors attached to the body are mapped into a rotated
The pointB corresponds to the physical location in the tu
nel of the pointA attached to the magnet. Of course they a
physically superimposed and one could purposely conf
them. Indeed one could view the entire process as a cha
of coordinates for a fixed pointA in the layout: this is math-
ematically correct but does not fit well in our view of th
magnet as an entity existing on its own. For example,
point A may refer to the position of our painted dot on t
magnet while its position in the layout,B, may not remain
constant as the magnet vibrates or is moved by humans

Finally, let us express the effect of the Euclidean transf
mationE on the coordinates. In all the above formulas w
have carefully avoided the usual confusion between a ve
and its coordinates. For example, the vectorDW refers to an
actual displacement, not its coordinates. This displacem
exists, is well defined, and is unique. It cannot depend on
choice of basis. This coordinate free language often se
very abstract to physicists: the language of differential geo
etry. However, it is the usual language of our everyday
perience with the Euclidean group. Indeed when I tell m
daughter ‘‘move your bike away from the door and put
against the fence,’’ the six year old understands immedia
what translation should be performed. If I replace this sta
ment by the phrase ‘‘move your bike in a direction perpe
ct
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dicular to the door frame by a distance of 3 meters,’’ it
unlikely that she will understand. I can change the basis
feet or centimeters, but it will still remain unclear. The ve
tor DW belongs to this category of coordinate free stateme
in which the affine Euclidean group acts. However, be
physicists, we will need a coordinate frame after all. Thus
express the final displaced coordinates in terms of the id
coordinates. These ideal coordinates are just the body c
dinates due to the convention of Eq.~4!,

OBW 5 (
i , j51

3

$DW •bW 12
j 1l iRi j %bW 12

j

5 (
i , j51

3

$DW •bW 12
j 1Rji

21l i%bW 12
j

⇓

E21~lW !5dW 1R21lW . ~6!

The ‘‘vectors’’ dW andlW are coordinates~or components! de-
scribing the position ofB in the layout basis atO12 ~see
again Fig. 2!. For reasons that will soon be apparent,
choose to define the mapE acting on the coordinates to be

E~lW !5R~lW 2dW !. ~7!

C. Application to time-based dynamics
in Cartesian coordinates

As we have said above, our propagators describe mo
from one cross section of the tunnel to another. By contr
ordinary Hamiltonian dynamics describes propagation fr
a timet1 to a timet2. If we apply a Euclidean transformatio
to a time-based propagator, then the entire ‘‘universe’’
rotated or translated. Furthermore, since time is left invari
by this transformation, the actual transformation is a triv
extension of the usual geometrical picture. We simply ha

E~qW ,pW !5„R~qW 2dW !,RpW …. ~8!

Now let us derive the effect of this Euclidean transformati
by assuming that a single magnet composes our universe
that it is rotated according to Eq.~6!. In the original configu-
ration, before the application of a Euclidean transformat
E, we have by assumption the propagator from timet1 to
time t2:

zW25zW t1→t2
~zW1!, where zW5~qW ,pW !. ~9!

As we rotate the device, the map retains its functional fo
in coordinatesZW attached to the magnet. Furthermore the
coordinates will transform like the affine coordinateslW of the
geometrical object. We thus have

E21~ZW 1!5zW1

and
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ZW 25zW t1→t2
~ZW 1!

⇓

zW2
new5~E21+zW t1→t2

+E!~zW1!. ~10!

D. Connections to lie operators: Time-based dynamics

Our derivation of the locally correct representation of t
Euclidean group will make use of an isomorphism betwe
various Lie algebras. Thus let us make contact with Lie
erators by introducing the new type of mapMt1→t2

associ-

ated with the transfer mapzW t1→t2
. It is defined as follows:

given an arbitrary functionf of phase space,

Mt1→t2
f5 f +zW t1→t2

or

;zW~Mt1→t2
f !~zW !5 f „zW t1→t2

~zW !…. ~11!

One can see in Eq.~11! that the mapMt1→t2
transforms an

arbitrary function f of phase space into a new functio
f +zW t1→t2

. It does this by composing~i.e., substituting or
‘‘plugging in’’ ! the original function with the usual transfe
mapzW t1→t2

. It is this mapMt1→t2
which can be expressed i

terms of Lie operators. For this reason we called such m
‘‘compositional’’ maps. One should also point out that th
definition as well as the existence of Lie operators extend
nonsymplectic maps as found in electron rings. In the cas
symplectic compositional maps the Lie operators reduce
the usual Poisson bracket operators.

Defining a similar compositional map for the transform
tions E andE21, we conclude that the new composition
mapE@Mt1→t2

# associated withE21+zW t1→t2
+E is given by

E @Mt1→t2
#5EMt1→t2

E21. ~12!

For example, if the mapzW t1→t2
is generated by a time

independent HamiltonianH, then the solution forMt1→t2
is

just

Mt1→t2
5exp„:2~ t22t1!H:…. ~13!

Here we follow the notation of Dragt for the Poisson brac
operator associated to a functionf :

: f :g5@ f ,g#. ~14!

The transformed mapE@Mt0→t1
# is given by

E @Mt1→t2
#5EMt1→t2

E21

5E exp„:2~ t22t1!H:…E21

5exp„E:2~ t22t1!H:E21
…

5exp„:2~ t22t1!H+E:…. ~15!
n
-

ps

to
of
to

-

t

In the case of a time-dependent Hamiltonian, the results
identical since the Euclidean group does not affect tim
Thus the rotated map is generated by the rotated Hamilto
H+E:

~H+E!~qW ,pW ;t !5H„E~qW ,pW ;t !…5H„R~qW 2dW !,RpW ;t….
~16!

N.B. This definition does not assume symplecticity. If t
mapzW is generated by a forceFW , it can still be rotated and the
compositional map can still be defined using Eq.~11!.

So far we have looked at the effect of the Euclidean gro
on a graphical representation of the magnet and on the ti
based dynamics. In both cases the three rotations and t
translations act linearly on either position space~graphical!
or on the full phase space~in Cartesian coordinates!. Our
ultimate goal is to apply the Euclidean group on the m
zW12 of the layout based dynamics.

III. EUCLIDEAN GROUP FOR THE LAYOUT:
THIN AND RACETRACK REPRESENTATIONS

In the preceding section we introduced the action of
Euclidean group as it acts on the usual time-based Ha
tonian in Cartesian coordinates. Strictly speaking it is a ‘‘d
namical’’ representation: we have in Eq.~16! a prescription
for rotating and translating the functionH and thus the map
it generates. However, the reader will agree that it is a triv
prescription. One needs only to double the dimensionality
the space since momenta will transform like positions un
rotations. Translations are even simpler: they still only aff
the positions.

The dynamical group associated with the layout dynam
is, on the other hand, less trivial. By introducing a map
each magnet, derived from a position-based Hamiltonian,
are now in a position to rotate and translate an individ
magnet and its map. From the point of view of the glob
time-basedH the magnet is a spatial fluctuation of the fun
tion H and the dynamical group of the layout rotates a
translates these individual fluctuations. The condition
magnet independence discussed above insures that this

FIG. 3. Rotation of a bend and the failure of the usual form
of time-based dynamics.@See Eq.~12!.#
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4670 55ÉTIENNE FOREST
fluctuation of the globalH is rigidly attached to the physica
magnet. Thus we should be able to derive the effect on
map in a way which parallels closely the effect on t
graphical objects. In the jargon of object-oriented progra
ming, we expect that it should be possible to use funct
overloading or virtual functions to relate the graphical a
dynamical actions.

In this section I will summarize results obtained in Re
@1# concerning the dynamical representation of the Euclid
group.

A. Failure of Eq. „12…

Consider a~bending! magnet placed in the layout betwee
two planes bisecting each other at an angleF12. In Fig. 3 we
performed on it a simple rotation in thex-z plane. As one
can see, it is incorrect to state that the rotated mapE@M12# is
given by ~dropping the primes from now on!
e

e
f

ec

0°
e

-
n

.
n

E@M12#5EM12E21. ~17!

@We assume that, prior to the application ofE, the map in its
ideal position is matched to the layout as in Eq.~1!.# The
reasons for this are simple: after rotation, the entrance
exit frame of the body do not coincide with those of th
layout. By analogy with time based dynamics, we say that
arbitrary Euclidean transformation will mix up the timelik
coordinate of the layout representation~the usual ‘‘s’’ vari-
able! with the dependent phase space variables.

B. The thin block method

In Ref. @1#, we used a trick to rotate the magnet correct
It can be seen that the failure of the usual formula is c
nected to the finite distanceO18O28 between the planes at
tached to the body. Thus we should consider rotating a z
length magnet. In Ref.@1#, we gave a formula forE@M12#
derived using the thin magnet concept:
~18!
the
fer
ent.

s-
The extraneous maps involved are a rotation in thex-z plane
of half the layout angle and a drift of half the distance b
tween the layout planes.

Y61/25expS :7F12

2
Ly : D ,

T z
61/25expS :6O1O2

2
pz : D . ~19!

In general, the operatorE can be written as

EdW ,ubW 5TdWRubW

5exp~ :dW •pW : !exp~u:bW •LW : !,

where

uubW uu51. ~20!

In summary, there are two differences between the tim
based and layout-based representations:~i! the presence o
operators to make the magnet ‘‘thin,’’ and~ii ! the functional
form of the generators :pW : and :LW :. Indeed, the Euclidean
transformations which affect the coordinate along the dir
tion of propagation~‘‘ z’’ or ‘‘ s’’ ! are different and lead to
nonlinearities as well as divergences for rotations of 9
Here is a table of the various Lie generators.
-

-

-

.

Time Layout

pz pz A~11d!22px
22py

2

Lx ypz2zpy yA~11d!22px
22py

2

Ly zpx2xpz 2xA~11d!22px
22py

2

Lz xpy2ypx xpy2ypx

~21!

C. Layout divergences: The need for a locally
accurate representation

One can check that the Lie algebras of the time and
layout representation are identical. However, the trans
maps associated to these Lie transforms are quite differ
Most important to our discussion is the mapY1/2. This com-
positional map is in fact a drift in polar coordinates; its a
sociated transfer map is given by the formula

xnew5
x

cos~u!S 12
pxtan~u!

pz
D , ~22!

px
new5pxcos~u!1sin~u!pz , ~23!

ynew5y1
pyxtan~u!

pzS 12
pxtan~u!

pz
D , ~24!

py
new5py , ~25!

l new5l 1
~11d!xtan~u!

pzS 12
pxtan~u!

pz
D , ~26!

where
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pz5A~11d!22px
22py

2.

We notice that this map becomes increasingly ill-behaved
we approach an angleu of 90°. The problem is inherent to
the thin map trick. In order to make the mapM12 ‘‘thin,’’
one must change the layout planes by rotating them by
the layout angle. However, the layout angle is not comple
arbitrary since it must be assumed that the trajectories
tt
an
u
,

e

ci
h

pr
th
u

i
ity
.’’

nd
e
n

iv
g

s

lf
ly
of

interest always go forward. We can see that application
the thin block method to an 180° racetrack magnet will
ways fail. One way to try to solve this problem is to deriv
using geometry, formulas which apply to the 180° bend a
use them for layout angles near 180°. It is possible to
such a thing because the geometry of a racetrack is sim
This result is given by the following complex set of formu
las:
~27!
in
geo-

-
op-
ill-
ect
p

f

where

Y7p/2
61/25expS :7p2F12

2
Ly : D , ~28!

Tx61/25expS :6O1O2

2
px : D , ~29!

Ep/25exp~ :dxpz1dypy2dzpx : !

3exp~u:bxLz1byLy2bzLx : !, ~30!

E2p/2
21 5exp~u:bxLz2byLy2bzLx : !

3exp~ :dxpz2dypy2dzpx : !. ~31!

One can see that the effect on an 180° layout can be go
from the thin layout result by a mere relabeling scheme
a few minus signs. One can check that some obvious res
are correctly predicted by the above formula. For example
we apply it to a semicircular magnet, a displacement ofdx in
the body prime frame corresponds to a drift ofdx at both the
entrance and exit planes. By contrast, a straight elem
would be sandwiched between a trivial translation ofdx and
its inverse as one would expect. The result for the semi
cular racetrack is obvious to anyone who has played wit
train set.

With the thin lens representation and the racetrack re
sentation, we have somewhat reduced the gravity of
problem. Clearly, for maps with layout angle around 90°, o
two representations will be equally good~or bad! on average.
Certain trajectories will be lost in the manipulations even
the effect of the Euclidean transformation is near ident
Thus we are lead to the ‘‘locally accurate representation

IV. THE LOCALLY ACCURATE REPRESENTATION

The techniques we will use involve the manipulation a
metamorphosis of ill-defined operators into a well-defin
one. First let us apply this technique to link the thin map a
180° representations.

A. Commuting ill-defined operators

As I have said, the racetrack representation can be der
by pure geometry and was indeed first derived by pure
en
d
lts
if

nt

r-
a

e-
e
r

f
.

d
d

ed
e-

ometry. However, it is instructive to derive it from the th
map representation by assuming that the dynamical and
metrical Lie groups are isomorphic~which they are! and both
global ~the dynamical group is not!. The idea is to commute
the operators5exp„:2 (p/2) Ly :… past the various opera
tors of the thin map representation. This is a suspicious
eration since the dynamical version of this operator is
defined. But, using the isomorphism, let us derive the eff
of the operators using the time-based version of our grou
~which includes the geometrical group trivially!. First we get
the following trivial results fors:

x→
s21

z,

px→pz ,

z→2x,

pz→2px . ~32!

Now let us take the operators on the left side ofM12 in Eq.
~18! and introduce the identity map asss21:

Y1/2Tz1/2ETz21/2Y21/2

5Y1/2ss21Tz1/2ss21Ess21Tz21/2ss21Y21/2

5Y2p/2
1/2 expS :O1O2

2
s21pz : Ds21Es

3expS :2 O1O2

2
s21pz : DYp/2

21/2. ~33!

The operators21Es is also evaluated by movings into the
exponent:

s21Es5s21exp~ :dW •pW : !exp~u:bW •LW : !s

5exp~ :dW •s21pW : !exp~u:bW •s21LW : !. ~34!

We must evaluate the effect ofs on the six Lie generators o
E. Using Eq.~32! we conclude that
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x→
s21

z,

px→pz ,

pz→2px ,

Lx→Lz ,

Lz→2Lx . ~35!

Thus Eq.~33! is further modified into

Y1/2Tz1/2ETz21/25Y2p/2
1/2 expS :O1O2

2
s21pz : Ds21Es

3expS :2 O1O2

2
s21pz : DYp/2

21/2

5Y2p/2
1/2 expS :2 O1O2

2
px : Ds21Es

3expS :O1O2

2
px : DYp/2

21/2

5Y2p/2
1/2 Tx21/2Ep/2Tx1/2Yp/2

21/2. ~36!

The right-hand side of Eq.~18! can also be manipulated so a
to produce the rest of the 180° formula.

B. Derivation of the locally accurate representation

Now one must ask how the miracle happened in the p
ceding section. Strictly speaking, the isomorphism does
apply if the operators multiply each other into one of t
rotations, which is not defined in the dynamical represen
tion. However, they apply to operators in the neighborho
of ill-defined operators even though the validity of the d
namical representation is restricted to an area of phase s
which is vanishingly small as we approach critical angl
such as 90°. The idea behind the ‘‘locally accurate repres
tation’’ is to remove from the thin map representation all t
maps which are ‘‘large,’’ i.e., those that depend on the lay
angle. This is done by moving them into the exponents
then using the isomorphism to recompute the exponents

Proceeding as if we are in the time based representa
we derive a trivial identity concerning the commutation
translations and rotations~summing over repeated indices!:

RubWTdWqi5RubW $qi2di%

5$Ri j qj2di%

5Ri j $qj2Rjk
21dk%

5TR21dW$Ri j qj%

5TR21dWRubWqi . ~37!

We first apply this formula to the left-hand side of Eq.~18!,

T z1/2ET z21/25TDW E,

where
-
ot

-
d
-
ce
t
n-

t
d

n,

DW 5~12RubW
21

!S 0

0

O12/2
D , ~38!

and then to the right-hand side

Tz21/2E21Tz1/25E21TDW . ~39!

Now we substitute Eqs.~38! and ~39! into Eq. ~18!:

E@M12#5Y1/2TDW EY21/2M12Y21/2Tz21/2E21TDWY1/2.
~40!

To proceed further we use the following property of rot
tions: If

then

RgaWexp~u:bW •LW : !RgaW
21

5exp~u:$RgaW
21

bW %•LW : !. ~41!

This allows us to get rid of the mapY1/2 by moving it into
the exponent ofE:

EdW ,ubW @M12#

5Y1/2TDW 1dWY21/2RuY21/2bWM12R2uY1/2bWY21/2TDW 2dWY1/2

5TY21/2$DW 1dW %RuY21/2bWM12R2uY1/2bWTY1/2$DW 2dW %

5TDW inRubW inM12R2ubW outT2DW out

5EDW in,ubW inM12EDW out,ubW out
21 . ~42!

These new inputs are all computable using simple linear
gebra,

DW in5Y21/2$DW 1dW %, ~43!

bW in5Y21/2bW , ~44!

DW out5Y1/2$DW 2dW %, ~45!

bW out5Y1/2bW , ~46!

DW 5~12RubW
21

!S 0

0

O12/2
D . ~47!

Y1/2 is a 333 matrix corresponding to a rotation ofF12 in
the x-z plane.Y21/2 is its inverse.

C. What have we achieved?

The final form for the displaced mapEdW ,ubW @M12# consists
of a dynamical operator acting at the entrance and a dyna
cal operator acting at the exit. These operators have the m
obvious physical interpretation. The first one,EDW in,ubW in, is a
collection of drifts and coordinate changes necessary
move a particle from the layout frame atO1 to the body
frame atO18 . The second operator,EDW out,ubW out

21 , is a collection
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of drifts and coordinate changes necessary to move a par
from the body frame atO28 to the layout frame atO2. All the
factors entering in the construction of these operators
small if the displacement of the magnet is small. Theref
these maps are locally accurate to the extent that the am
of phase space lost due to the nonlocality of the dynam
representation is proportional to the actual displacement
not to the layout angleF12.

Moreover we have derived the local dynamical resu
directly from the geometrical operator. The geometrical o
erator requires one fiducial frame of reference attached to
magnet which, in the ideal positioning, is superimposed o
fiducial frame of the layout. The displacements of the g
metrical object are an exercise in relating these two fram
By using the thin magnet trick, we can use the geometr
formulas to produce the dynamical representation. Then
using our isomorphisms, we commute all ‘‘big operator
necessary for the thin map trick until they cancel one
other. We have then succeeded in relating layout plane
body planes in terms of the geometrical fiducial frames w
out using mind boggling geometrical constructions. O
methods have two clear advantages, as follows.

~i! If someone decides to change the fiducial frames,
results of this paper provide an immediate algebraic presc
tion for the derivation of the locally accurate representat
in terms of the new frames. One first produces the thin m
representation in this new frame and second one comm
the layout operators using the above techniques. At no p
does the geometry needed for the dynamical representa
exceed in complexity that of the geometrical objects.

~ii ! In addition, the spirit behind our methods fits the ne
‘‘object oriented’’ programming methods very well. It e
evates the map of the magnet and the geometrical pictur
the status of ‘‘objects’’ within the new programming par
digm. Obviously if a computer code knows how to pictu
the magnet on a screen as it moves it~CAD procedure!, it
also knows~through function overloading, for example! how
to propagate in the layout across the displaced element.

On the last point it important to remember that the d
namical structure of the map was of paramount importa
in the elevation of the map to the status of an independ
object. A magnet can propagate self-interacting particles
still remain a perfectly well-defined geometrical object, b
ceases to be a self-contained dynamical object. Of cours
the self-interacting forces are sufficiently localized~beam-
beam for example!, one can cheat and retain the dynamic
object in first approximation.

V. TRIVIAL APPLICATION: THE TRANSVERSE TILT
IN LARGE MACHINES

Many tracking codes in accelerator physics assume
the small angle approximation holds. This is so ingrained
the culture that it has become customary to refer to be
and quadrupoles as ‘‘linear elements.’’ In addition, the an
F12 of the layout is also assumed to be small. Under th
conditions it is interesting to derive an approximate form
for the transverse tilt of an element situated between lay
planes for whichF12Þ0.

Let us start with the ‘‘back-of-the-envelope’’ derivatio
of this effect. First it is assumed that ifF12 is not zero, then
le
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there must exist in this layout slot a bending element wh
bends the ideal particle byF12. Let us call the map for this
elementS. In units of magnetic rigidity (Br), the value of
theB field is just 1/r12, the curvature of an ideal trajector
between plane 1 and plane 2. Then it is postulated that
rotation of this element along thez axis by an angleuz has
two components: first there is a change of coordinates at
entrance and exit~as in a straight element! given by a rota-
tion Ruz

,

Ruz
5exp~uz :Lz : !, ~48!

and second, by rotating a bend, we create a small compo
of theB field in thex direction of magnitude sin(uz)/r12. The
effect of this component is to leading order given by the m

expS 2
sin~uz!L12

r12
yD>exp~2uzF12y!. ~49!

We can then combine all of this into the following symm
trized expression for the rotated map:

Ruz
@S#>Ruz

expS 2
uz
2

F12yDSexpS 2
uz
2

F12yDRuz
21.

~50!

This derivation seems to depend on the value of the be
ing field, which we related to the layout angle for an ide
magnet. However, as suggested by the final answer and d
onstrated in the above sections of this paper, the small be
ing introduced by the tilt is a property of the layout alone.
is there for all possible mapsS one may stick in the layout
Let us get the result of Eq.~50! using the locally exact rep
resentation. First one notices that the vectorDW given by Eq.
~47! vanishes for anx2y rotation. Thus we only have to
examinebW in andbW out:

bW out5Y1/2bW 'S 1 0
F12

2

0 1 0

2
F12

2
0 1

D S 0

0

1D
for a small layout angle5S F12

2

0

1
D ,

bW in5Y21/2bW 'S 2
F12

2

0

1
D . ~51!

Thus, following the results of Eq.~42!, we get for the rotated
map
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Ruz
@S#>expS uz :Lz2

F12

2
Lx : DS expS uz :Lz2

F12

2
Lx : D .

~52!

Using the dynamical expression ofLx given in Eq.~21!, we
obtain

expS uz :Lz2
F12

2
Lx : D

5expS uz :Lz2
F12

2
yA~11d!22px

22py
2: D

>expS uz :Lz2
F12

2
y: D>exp~uz :Lz : !expS :2 uzF12

2
y: D

5Ruz
expS :2 uzF12

2
y: D , ~53!

from which Eq. ~50! immediately follows. Here we have
made use of the smallness of the angles involved includ
the momenta.

The reader with a purely analytical mind may say to hi
self the following: ‘‘The author has derived formula~50! in
two different ways, so what? Once we have the result
should just apply it independent of its source or origin
Although this is true,only the correct formalism gives us
way to approximate the Euclidean group for small misalig
ments and tilts without breaking the ‘‘object orientednes
of a well-written code. Thus in a large machine with sm
bending angles it is preferable to keep the structure of
~42! and to approximate the various operators used in
formula.
rt.
g

-

e

-
’
l
q.
is

In conclusion, while it is nice to see usual results eme
ing from the correct formalism, this is not the main messa
of this paper. The primary message is for those who
object-oriented programming. One should use a theory
which the ‘‘magnet’’ is an object from a graphical as well
a dynamical point of view. And, when acceptable appro
mations are introduced in the code, they should be don
such a way as to preserve the magnet-object structure.
should ask questions like ‘‘Can I put back the more prec
formulas easily?,’’ ‘‘Can I introduce the more complex sma
machine integrators without restructuring the program?,’’
‘‘Can I compute the effects of radiation and the stochas
beam envelopes without yet another rewriting?’’ It is a d
ficult task to keep all these questions in sight while design
an ideal code, however if at any moment one loses the ab
to rotate a magnet independently of the nature of its sin
particle map, one can safely bet that the structure of
theory has been needlessly compromised in the code im
mentation.
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